Flow, Mass Cytometry

Enjoy this curated listing of references related to standardization in mass cytometry.

Flow Cytometry has proven itself as a valuable tool for assessing cellular processes; however, the advent of mass cytometry or mass cytometry by Time-Of-Flight (CyTOF®) allows investigators to expand their analyses, and to study full cell signalling pathways. Traditional conjugated antibody fluorophores used in flow cytometry have limited capability compared to the metal particle conjugated antibodies employed by mass cytometry. Flow cytometry can quantify 18 proteins per cell, at>10000cells/s; comparatively, mass cytometry can potentially extend these capabilities significantly. Immunophenotyping by mass spectrometry provides the ability to measure > 36 proteins at a rate of 1000cells/s (Bendall et al). While mass cytometry offers some expanded capabilities it does come with some trade-offs compared to traditional flow cytometry.

Advantages of mass cytometry relative to Fluorescence Cytometry

  • Greater number of parameters per event
  • Higher sensitivity
  • Little compensation required
  • No “spreading” or error from fluorophores

Limitations of mass cytometry relative to Fluorescence Cytometry

  • Higher operating / reagent cost
  • Limited conjugates available
  • Cannot sort

Bangs Laboratories does not currently manufacture standards expressly for mass cytometry; however, investigators have utilized our Quantum Simply Cellular beads (labeling with metal-tagged Abs) or, in general, lanthanide chelate (e.g. europium chelate) beads as instrument and assay standards.

References

  1. Abdelrahman, A. I., Dai, S., Thickett, S. C., Ornatsky, O., Bandura, D., Baranov, V., & Winnik, M. A. (2010). Lanthanide-containing polymer microspheres by multiple-stage dispersion polymerization for highly multiplexed bioassays. JACS, 132(7), 2465-2465. https://doi.org/10.1021/ja910402c (synthesized lanthanide particles)
  2. Abdelrahman, A. I., Ornatsky, O., Bandura, D., Baranov, V., Kinach, R., Dai, S., Thickett, S. C., Tanner, S., & Winnik, M. A. (2010). Metal-containing polystyrene beads as standards for mass cytometry. J Anal At Spectrom, 25(3), 260. https://doi.org/10.1039/b921770c (synthesized particles)
  3. Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J. E., & Tanner, S. D. (2009). Mass Cytometry: Technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem, 81(16), 6813-6822. https://doi.org/10.1021/ac901049w (Bangs Labs, amine-modified polystyrene microspheres Cat.# PA04N)
  4. Bendall, S. C., Nolan, G. P., Roederer, M., & Chattopadhyay, P. K. (2012). A deep profiler’s guide to cytometry. Trends Immunol, 33(7), 323-332. https://doi.org/10.1016/j.it.2012.02.010
  5. Bringeland, G. H., Bader, L., Blaser, N., Budzinski, L., Schulz, A. R., Mei, H. E., Myhr, K., Vedeler, C. A., & Gavasso, S. (2019). Optimization of receptor occupancy assays in mass cytometry: Standardization across channels with QSC beads. Cytometry Part A, 95(3), 314-322. https://doi.org/10.1002/cyto.a.23723 (Bangs Labs, QSC anti-mouse beads, Cat.# 815A)
  6. Budzinski, L., Schulz, A. R., Baumgart, S., Burns, T., Rose, T., Hirseland, H., & Mei, H. E. (2019). Osmium-labeled microspheres for bead-based assays in mass cytometry. J Immunol, 202(10), 3103-3112. https://doi.org/10.4049/jimmunol.1801640 (aliquoted polystyrene beads)
  7. Finck, R., Simonds, E. F., Jager, A., Krishnaswamy, S., Sachs, K., Fantl, W., Pe’er, D., Nolan, G. P., & Bendall, S. C. (2013). Normalization of mass cytometry data with bead standards. Cytometry Part A, 83A(5), 483-494. https://doi.org/10.1002/cyto.a.22271 (polystyrene bead standards embedded with five different metal isotopes)
  8. Hu, A. X., Adams, J. J., Vora, P., Qazi, M., Singh, S. K., Moffat, J., & Sidhu, S. S. (2018). EPH profiling of BTIC populations in glioblastoma Multiforme using CyTOF. Methods Mol Biol, 155-168. https://doi.org/10.1007/978-1-4939-8805-1_14 (Aldhyde/Amidine latex beads)
  9. Liang, Y., Abdelrahman, A. I., Baranov, V., & Winnik, M. A. (2011). The synthesis and characterization of lanthanide-encoded poly(styrene-Co-methacrylic acid) microspheres. Polymer, 52(22), 5040-5052. https://doi.org/10.1016/j.polymer.2011.08.056 (synthesized lanthanide chelate microspheres)
  10. Lou, X., Zhang, G., Herrera, I., Kinach, R., Ornatsky, O., Baranov, V., Nitz, M., & Winnik, M. (2007). Polymer-based elemental tags for sensitive bioassays. Angewandte Chemie, 119(32), 6223-6226. https://doi.org/10.1002/ange.200700796 (polystyrene calibration standards)
  11. Takahashi, C., Au-Yeung, A., Fuh, F., Ramirez-Montagut, T., Bolen, C., Mathews, W., & O’Gorman, W. E. (2016). Mass cytometry panel optimization through the designed distribution of signal interference. Cytometry Part A, 91(1), 39-47. https://doi.org/10.1002/cyto.a.22977 (polystyrene bead standards containing known concentrations of the metal isotopes)
  12. Tanner, S. D., Bandura, D. R., Ornatsky, O., Baranov, V. I., Nitz, M., & Winnik, M. A. (2008). Flow cytometer with mass spectrometer detection for massively multiplexed single-cell biomarker assay. Pure and Applied Chemistry, 80(12), 2627-2641. https://doi.org/10.1351/pac200880122627 (functionalized polymer to attach to 30 DTPA chelators, and conjugated to a bismaleimide linker)
  13. Thickett, S. C., Abdelrahman, A. I., Ornatsky, O., Bandura, D., Baranov, V., & Winnik, M. A. (2010). Bio-functional, lanthanide-labeled polymer particles by seeded emulsion polymerization and their characterization by novel ICP-MS detection. J. Anal. At. Spectrom, 25(3), 269-281. https://doi.org/10.1039/b916850h (synthesized particles loaded with Eu(TNB)3)
  14. Wang, L., Abbasi, F., Ornatsky, O., Cole, K. D., Misakian, M., Gaigalas, A. K., He, H., Marti, G. E., Tanner, S., & Stebbings, R. (2012). Human CD4+ lymphocytes for antigen quantification: Characterization using conventional flow cytometry and mass cytometry. Cytometry Part A, 81A(7), 567-575. https://doi.org/10.1002/cyto.a.22060 (full spectrum fluor bead used for calibration)

Click for PDF.