

Equations

TechNote 206

Values obtained through use of the following equations should be considered estimates, as the equations are based upon a number of theoretical assumptions. Values that are determined empirically or through use of analytical techniques are expected to differ to an extent. Many values (such as % solids, diameter, density & surface area) are provided on the Certificate of Analysis and order paperwork that accompanies microsphere shipments.

Solids Content

$S = \frac{m \bullet 100}{V_s} OR m = \frac{S \bullet}{1}$	V_{s} S V_{s} m	= = =	weight/volume % solids (e.g., $S = 10$ for 5mL suspension, 0.5g microspheres) volume of suspension (mL) mass of microspheres (g)								
% Coefficient of Variation (Size Distribution of the Microsphere Population)											
% CV = <u>SD</u> x 100		= = =	% coefficient of variation (size distribution of the microsphere population) standard deviation (μm) <i>(Note: Standard deviation is not provided for all products.)</i> mean diameter (μm)								
# Microspheres/Gram											
$N = \frac{6 \times 10^{12}}{\pi \bullet \rho_{\rm S} \bullet d^3}$	N P _s d	= = =	# microspheres/gram for dry powders density of solid sphere (g/cm³) mean diameter (μm)								
# Microspheres/mL											
$N = \frac{6 \times 10^{10} \bullet S \bullet \rho_{L}}{\pi \bullet \rho_{S} \bullet d^{3}}$	N S PL P _s d	= = = =	# microspheres/mL for suspensions in water weight % solids (for 10% solids suspension, S=10) density of microsphere suspension (g/mL) $100 \bullet \rho_{s} / [S (1-\rho_{s}) + (100 \bullet \rho_{s})]$ density of solid sphere (g/cm ³) mean diameter (µm)								
Surface Area / Gram											
$AG = \frac{6 \times 10^{12}}{\rho_{\rm S} \bullet d}$	AG P _s d	= = =	surface area/gram for dry powders (µm²/g) density of solid sphere (g/cm³) mean diameter (µm)								
Surface Area / mL											
$A = \frac{6 \times 10^{10} \bullet S \bullet \rho_{L}}{\rho_{S} \bullet d} \qquad \begin{array}{c} A & = \\ S & = \\ \rho_{L} & = \\ \rho_{L} & = \\ \rho_{S} & = \\ d & = \end{array}$			surface area / mL for suspensions in water (μ m ² /g) weight % solids (for 10% solids solution, S=10) density of microsphere suspension (g/mL) 100 • ρ_s / [S (1- ρ_s) + (100 • ρ_s)] density of solid sphere (g/cm ³) mean diameter (μ m)								
Parking Area (Surface Charge Den	sity)										
$P = \frac{1}{1.004 \bullet D_c \bullet \rho_s \bullet d}$	P DC P _s d	= = =	parking area (Ų/charge group) surface charge density or titration value (meq/g) (provided in µeq/g on COA) density of solid sphere (g/cm³) mean diameter (µm) <i>Notes: Surface titer / parking area are not provided for all products.</i>								
9025 Technology Dr. Fishers, IN 46038 • www.bangslabs.	com • info@bangslabs.com •	317.570.	7020 * fax 371.570.7034 TechNote 206 Rev. #007, Active: 11/July/2018 Page 1 of 2								

Charge Groups / Microsphere

IVI	= = =	# charge groups / microsphere mean diameter (μm) parking area (Ų)		
d P _s P _o h	= = = =	settling velocity (cm / sec) mean diameter (μm) density of solid sphere (g/cm ³) medium density (g/cm ³) medium viscosity (poise = g/cm • sec) gravity (980 cm/sec ²)		
	= =	maximum settling velocity (cm/sec) for a single microsphere settling in water at room temperature under the influence of normal gravitational force (1G) density of solid sphere (g/cm ³) mean diameter (µm)		
n	=	true settling velocity or hindered velocity (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature maximum settling velocity multiples of earth gravitation constant, G forces		
h	= =	settling time (sec) distance from the top of the liquid to the bottom layer of settled solids (cm) true settling velocity or hindered velocity (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature under the influence of normal gravitational force (1G)		
$V_{ch}^{5\%}$	=	hindered settling velocity in the centrifuge (cm/sec) for a 5% w/w suspension of microspheres settling in water at room temperature		
	= = =	amount of representative protein required to achieve surface saturation (mg protein/g microspheres) density of solid sphere (g/cm ³) mean diameter (µm) capacity of microsphere surface for a given protein (mg protein/m2 of sphere surface) <i>Notes</i> : C ~ 3 mg/m ² for BSA [MW 65kD], C ~ 2.5 mg/m ² for bovine lgG [MW 150kd]. ¹ See Tech Note 204, <i>Adsorption to Microspheres</i> , and TechNote 205, <i>Covalent Coupling</i> , for more detailed information.		
	$\begin{array}{c} d \\ P \\ \\ v \\ d \\ P_{S} \\ P_{0} \\ h \\ G \\ \\ Vm \\ P_{S} \\ d \\ \\ V_{h}^{5\%} \\ V_{m} \\ G \\ \\ V_{h}^{5\%} \\ V_{ch}^{5\%} \\ V_{ch}^{5\%} \\ \\ V_{ch}^{5\%} \\ \\ S \\ P_{S} \\ d \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

SAMPLE VALUES

Diameter (Microns)	Beads per gram	Beads per mL	Surface Area (µm²/g)	Surface Area (µm²/mL)	Settling Velocity (cm/sec)			
0.052	1.3x10 ¹⁶	1.3x10 ¹⁵	1.1x10 ¹⁴	1.1x10 ¹³	7.4x10 ⁻⁹			
0.100	1.8x10 ¹⁵	1.8x10 ¹⁴	5.7x10 ¹³	5.7x10 ¹²	2.7x10 ⁻⁸			
0.500	1.5x10 ¹³	1.5x10 ¹²	1.1x10 ¹³	1.1x10 ¹²	6.8x10 ⁻⁷			
1.000	1.8x10 ¹²	1.8x10 ¹¹	5.7x10 ¹²	5.7x10 ¹¹	2.7x10 ⁻⁶			
2.500	1.2x10 ¹¹	1.1x10 ¹⁰	2.3x10 ¹²	2.3x10 ¹¹	1.7x10 ⁻⁵			
10.00	1.8x10 ⁹	1.8x10 ⁸	5.7x10 ¹¹	5.7x10 ¹⁰	2.7x10 ⁻⁴			
25.00	1.2x10 ⁸	1.2x10 ⁷	2.3x10 ¹¹	2.3x10 ¹⁰	2.0x10 ⁻³			
108.0	1.4x10 ⁶		5.3x10 ¹⁰					
500.0	1.4x10 ⁴		1.1x10 ¹⁰					
Notes: Calculations for 0.052-25.0µm are based on a suspension of polystyrene microspheres (density = 1.05 g/cm ³) at 10% solids (w/v).108 and 500µm diameter microsphere calculations compositions are based on compositions of poly(styrene/2% divinylbenzene), density = 1.06 g/cm ³ , and the calculations are based on dry presentation.								

REFERENCES

1. Cantarero, L.A., J.E. Butler, J.W. Osborne. 1980. *The adsorptive characteristics of protein for polystyrene and their significance for solid-phase immunoassays*. Analytical Biochemistry, 105: 375-382.

2. Bangs, L.B. 1987. Uniform latex particles. Indianapolis: Seragen Diagnostics, Inc.

© 2001- 2018 Bangs Laboratories, Inc. All Rights Reserved