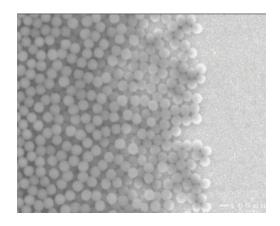


Microsphere Characteristics for Rapid Test Development


Presented by Mary Meza at Diagnostic Support 2001

Chicago, IL April 24-25, 2001

Polymeric Microspheres

- Established technology
- Large scale of manufacture
- Broad range of possibilities

2

Bangs Laboratories, Inc.

Choosing Microspheres

- Color
 - Red, dark blue, and black most common
 - Can combine colors
- Size
 - Good flow rates with diameters ≤ 1/10 the membrane pore size
 - Capture bead $\geq 1/3$ the pore size

3

Bangs Laboratories, Inc.

Choosing Microspheres

- Surface properties
 - Polystyrene for adsorption
 - Surface functional groups for covalent attachment
 - Binding proteins
- Special properties
 - Absorbance of specific wavelength
 - Fluorescence
 - Magnetic
 - Density, refractive index, etc.

Bangs Laboratories, Inc.

Coupling-Chemical Groups on Ligands

- Carboxyl from C-terminal amino acids, aspartic & glutamic acids
- Amino from N-terminal amino acids, lysine, and amine-terminated oligos
- Sulfhydryl from cysteine

Coupling-Chemical Groups on Particles

- Carboxylate
- Amine
- Amide
- Hydrazide
- Hydroxyl

- Chloromethyl
- Aldehyde
- Epoxy
- Others

6

Bangs Laboratories, Inc.

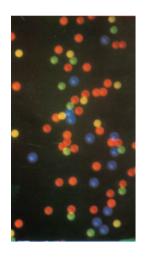
Gold Colloid vs. Polymer Beads

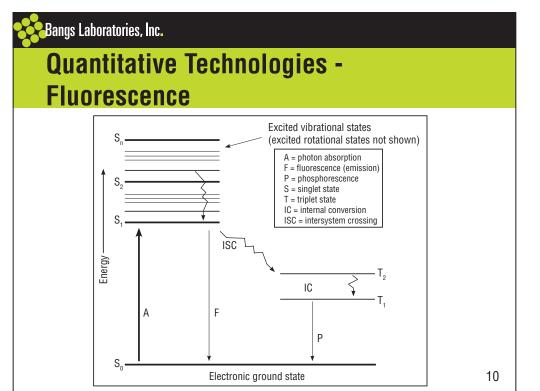
- Colloidal Gold
 - Intense red color
 - 4-50nm
 - Adsorption or disulfide coupling
 - 19 g/cm³
 - Color change / fading

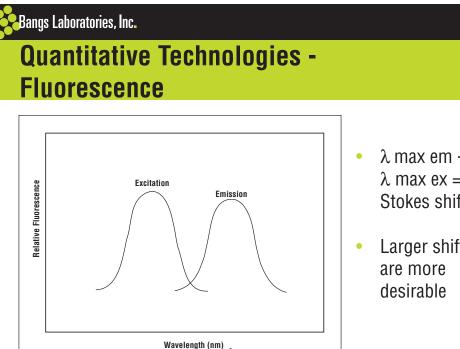
- Microspheres
 - Any color / shade / fluorescent / magnetic / etc.
 - 20nm 200µm
 - Adsorption / covalent binding
 - ~1.05 g/cm³
 - Stable color

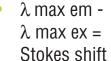
7

Bangs Laboratories, Inc.

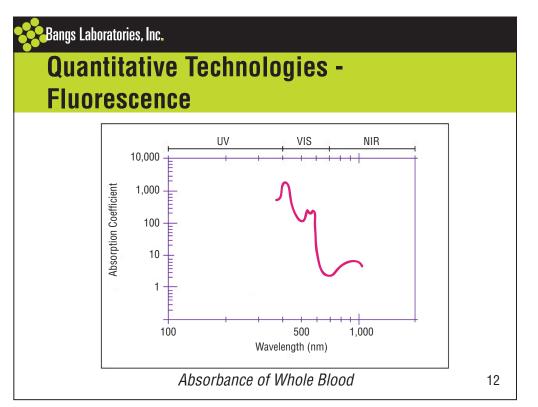

Quantitative Technologies

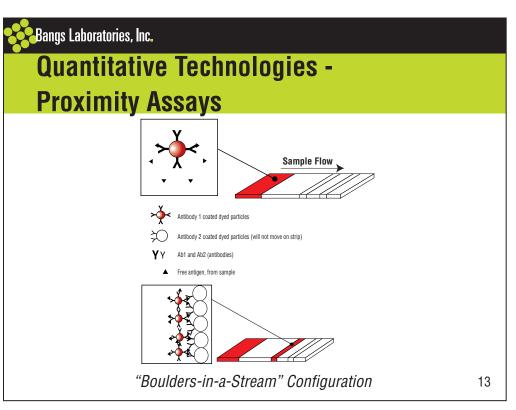

- Reflectance / transmission
- Fluorescence
- Proximity
- Magnetic properties


Bangs Laboratories, Inc.

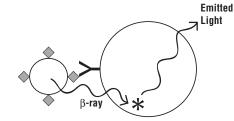

Quantitative Technologies - Reflectance / Transmittance

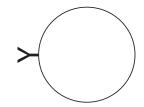
- Reflectance
 - 10µm read depth
- Transmittance
 - read through membrane
- Currently most common type





Larger shifts


11


Quantitative Technologies - Proximity Assays

Assays

Scintillation Proximity Assays (SPA): If Ag/Ab reaction binds particles together, light will be given off when β -rays emitted from Ag-coated microspheres enter Abcoated, scintillator-dyed microspheres. Free Ag in sample interferes with the two microspheres coming together and decreases light output. (Amersham)

Ab-Coated, Scintillator-Dyed Microspheres

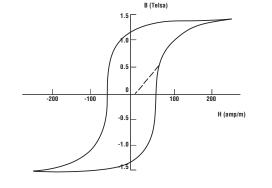
14

Bangs Laboratories, Inc.

Quantitative Technologies - Proximity Assays

Technology	Particle 1	Particle 2	Signal
Scintillation Proximity	β emitter	Scintillator	Light
Assay (SPA)	"dyed" bead	dyed beads	
Luminescent Oxygen	Singlet	Singlet	Light
Channeling	oxygen donor	oxygen	
Immunoassay (LOCI)		acceptor	
Fluorescence	Fluorophore	Fluorophore	Fluorescence
Resonance Energy	donor	acceptor	at λ emission
Transfer (FRET)			of acceptor
Fluorescence	Fluorophore	Quencher	Reduced
Inhibition			fluorescence
Up-converting	Yb³+ absorber	ER ³⁺ emitter	Fluorescence
Phosphors			at increased λ

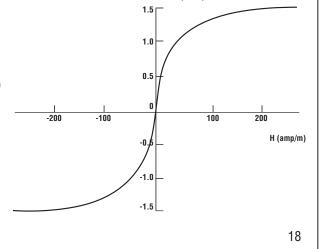
Bangs Laboratories, Inc.


Quantitative Technologies - Magnetic

- Quantum design
 - Measures local magnetic field expressed by the total mass of iron
- Ericomp
 - Measures residual magnetism of magnetic beads

Bangs Laboratories, Inc.

Quantitative Technologies - Magnetic Hysteresis


 Ferromagnetic hysteresis typical of iron oxides

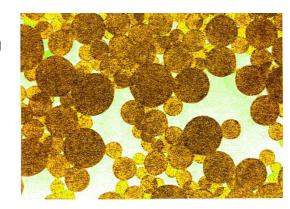

Bangs Laboratories, Inc.

Quantitative Technologies - Magnetic Hysteresis

 Anhysteresis - no residual magnetism

B (Telsa)

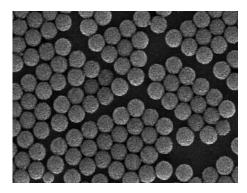
Bangs Laboratories, Inc.


Quantitative Technologies - Magnetic Particle Types

Туре	Matrix Material	Functional Groups	Diameter
Synthetic Polymer (encapsulated or not)	Polystyrene, divinylbenzene, polyvinyltoluene, polyester, polyurethane	None, SO ₃ , COOH, NH ₂ , Epoxy, OH, CH ₂ CI, Toysl, CHO, SH	>0.3-5µm Usually spherical
Silane coated iron oxide	Silica	SiO ₂ and derivatives (OH, NH ₂ , COOH)	0.5-3µm Spherical and non- spherical
Polysaccharide particles	Dextran	OH and activated derivatives	20-50nm Usually spherical
Polysaccharide / Silane	Crosslinked dextran - silica fortified	OH and activated derivatives	250nm Non-spherical
Polysaccharide particles	Agarose, cellulose	OH and activated derivatives	1-10µm Usually spherical
Protein particles	Gelatin, albumin	NH ₂ , COOH, SH, and OH	>10µm Usually spherical
Liposome	Phospholipids	None	>10µm Spherical
Chemically activated iron oxide	None	Dimercaptosuccinic acid	5-300nm Non-spherical?

Bangs Laboratories, Inc.

Quantitative Technologies - Magnetic - Estapor® Classical Beads


- Homogeneous
 Fe₃O₄ distribution
- Large magnetite content
- Broad size distribution

Quantitative Technologies - Magnetic - Estapor® Classical Beads

- Uniform size distribution
- Predictable surface area and separation

22

Summary

- Polymeric microsphere technology is mature and economical.
- Quantitative assays increase technical demands on the label.
- Many labeling options exist within the range of microspheres

23

MM - 04/01 Copyright 2001, Bangs Laboratories, Inc. All Rights Reserved